Methods for further improving accuracy of identifying blend ratio of wool and cashmere by computer image recognition technology were researched in this paper. Current research situation of testing methods on blend ratio of wool and cashmere was summarized, existing problems were analyzed, and factors which affect testing accuracy were also discussed. Meanwhile, a new testing method based on dual index was raised.
blended bulk source on which fiber properties have been determined under the International Calibration Cotton Standards Program. Compute (1) yarn linear density, (2) the commercial or legal mass of a shipment or delivery of any specific textile material (see also commercial moisture regain) or (3) the. Cashmere and wool were sliced and images clearly attributed to the obvious color divergence after staining. In the image processing procedure, a support vector machine (SVM) was used to remove the background and separate wool and cashmere fibers. Some other parameters of the SVM were selected to identify wool and cashmere fibers beyond the color character. When the wool and cashmere fibers were completely separated, the blend ratio was calculated by means of the picture-handling and data-handling functions of MATLAB software. This research work presents an accurate and fast method of analyzing the blend ratio, and the results obtained were a confirmation of this.